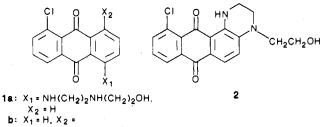
Structural Modification Study of Mitoxantrone (DHAQ). Chloro-Substituted Mono- and Bis[(aminoalkyl)amino]anthraquinones

Robert K.-Y. Zee-Cheng, Abraham E. Mathew, Pei-ling Xu, Raymond V. Northcutt, and C. C. Cheng*

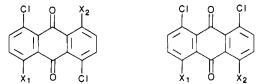

Drug Development Laboratory, University of Kansas Cancer Center, and Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66103. Received February 23, 1987

A number of chloro-substituted [(aminoalkyl)amino]anthraquinones were synthesized and evaluated for their antineoplastic and cytotoxic activity. Treatment of 5,8-dichloroquinizarin with substituted amines in pyridine resulted in the replacement of one halogen atom by the amino group to yield mainly 1-chloro-5,8-dihydroxy-4-(substituted amino)anthraquinones. On the other hand, reaction between the dichloroquinizarin and the amines in butanol gave predominately 1,4-dichloro-5-hydroxy-8-(substituted amino)anthraquinones. Other compounds in this series were prepared by displacement of chloro, nitro, or tosyl functions of the appropriate anthraquinone derivatives with various amines by conventional methods. 1,4-Dichloro-5-hydroxy-8-[[2-[(2-hydroxyethyl)amino]ethyl]amino]anthraquinone (6b) possesses the highest inhibitory activity against P388 leukemia. Its inhibitory action against B16 melanoma and against the in vitro L1210 screen is also significant. Several other chloro- and hydroxy-substituted aminoanthraquinones (5a, 5b, and 6a) also showed noticeable activity against P388 in vivo and L1210 in vitro. Structure-activity-relationship examination indicated that the hydroxyl group may contribute to the binding of certain chloroaminoanthraquinones for their biological activity and that the [2-[(2-hydroxyethyl)amino]ethyl]amino side chain seems to be the preferred substituent over other amino side chains.

In connection with our continuing efforts on the structural modification study of the potent anticancer agent mitoxantrone (DHAQ),^{1,2} some chloro-substituted [(aminoalkyl)amino]anthraquinones were synthesized for acquiring a better understanding of molecular binding characteristics as well as conducting a continued structure-activity-relationship study of compounds of this type. For a direct comparison with DHAQ, compounds chosen to be synthesized are restricted to only those with groups substituted at the α -positions of the anthraguinone ring.

Chemistry

Two monochloro mono(substituted amino)anthraquinones were prepared as follows: 1-Chloro-5-[[2-[(2hydroxyethyl)amino]ethyl]amino]anthrquinone (1a), mp 146-148 °C, was prepared by treating 1,5-dichloroanthraquinone³ with 2-[(2-aminoethyl)amino]ethanol in CH₃CON(CH₃)₂. The corresponding 1-chloro-8-(substi-

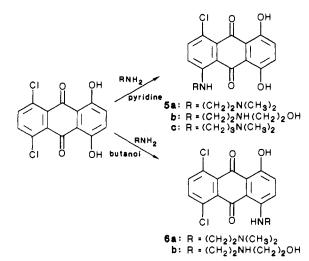


NH(CH2)2NH(CH2)2OH

tuted amino)anthraquinone 1b, mp 144-145 °C, was obtained from 1,8-dichloroanthraquinone³ and the amine in dioxane. Attempted preparation of 1b by other investigators, using pyridine as the reaction solvent, resulted in the formation of a tetracyclic compound 2, mp 216-218 °C.4

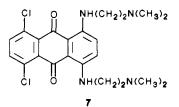
- (a) Zee-Cheng, R. K.-Y.; Cheng, C. C. J. Med. Chem. 1978, 21, 291.
 (b) Murdock, K. C.; Child, R. G.; Fabio, P. F.; Angier, R. B.; Wallace, R. E.; Durr, F. E.; Citarella, R. V. J. Med. Chem. 1979, 22, 1024.
- (a) Cheng, C. C.; Zee-Cheng, R. K.-Y. Prog. Med. Chem. 1983, (2)20, 83. (b) Zee-Cheng, R. K.-Y.; Cheng, C. C. Drugs Future 1983, 8, 229.
- (3) Fierz-David, H. E. Helv. Chim. Acta 1927, 10, 197.
- Andreani, A.; Rambaldi, M.; Bonazzi, D.; Lelli, G.; Greci, L.; Rossi, R.; Galatulas, I. Arch. Pharm. (Weinheim, Ger.) 1985, 318, 400.

Tosylation of 1,5-dichloro-4,8-dihydroxyanthraguinone,⁵ according to the method of Zielske,⁶ yielded the ditosyl derivative. One of the two tosyl groups was readily replaced by N,N-dimethylethylenediamine in CH₃CN, which, upon hydrolysis, gave 1,5-dichloro-4-[[2-(dimethylamino)ethyl]amino]-8-hydroxyanthraquinone (3a). The related (hydroxyalkyl)amino derivative 3b was prepared in a similar manner. The isomeric 1,8-dichloroanthraquinone compound 4a was obtained from 1,8-dichloro-4,5-dihydroxyanthraquinone in an analogous fashion.


- **4a:** $X_1 = NH(CH_2)_2N(CH_3)_2$, $X_2 = OH$ **b:** $X_1 = X_2 = NH(CH_2)_2N(CH_3)_2$ **3a:** $X_1 = NH(CH_2)_2N(CH_3)_2$. X₂ = OH **b**: $X_1 = NH(CH_2)_2NH(CH_2)_2OH$.
- $X_2 = OH$ c: $X_1 = X_2 = NH(CH_2)_2N(CH_3)_2$

The bis(substituted amino)-1,5-dichloroanthraquinone 3c and its 1,8-dichloro analogue 4b were prepared by nitration of the appropriate dichloroanthraquinones at 25-35 °C followed by treatment of the resulting dichlorodinitroanthraquinones⁷⁻⁹ with N,N-dimethylethylenediamine in dioxane.

An interesting replacement behavior was noticed with 1,4-dichloro-5,8-dihydroxyanthraquinone.⁷ Treatment of the dichlorodihydroxyanthraquinone with aliphatic amines in pyridine under reflux resulted in the replacement of one halogen atom by the amino group to yield mainly 1chloro-5,8-dihydroxy-4-(substituted amino)anthraquinones 5a-c. On the other hand, reaction between the dichlorodihydroxyanthraguinone and the amines in refluxing


- (5) Allen, C. F. H.; Frame, G. F.; Wilson, C. V. J. Org. Chem. 1941, 6,732
- (6) Zielske, A. G. Abstracts of Papers, 188th National Meeting of the American Chemical Society, Philadelphia, PA; American Chemical Society: Washington, DC, 1984; MEDI 56. Private communication with Dr. Zielske, 1984.
- Bayer, O. Chinone. III; Georg Thieme Verlag: Stuttgart, 1979. Stephanov, F. N.; Kozlov, O. F.; Chernyakhovskaya, E. E. Zh.
- Org. Khim. 1974, 10, 579. Shimizu, Y.; Yamada, E. Japan Kokai, 1974 125 436; Chem.
- Abstr. 1975, 83, 61685n.

Notes

butanol replaced one of the two hydroxy groups by amine with retention of both chloro groups to form predominately 1.4-dichloro-5-hydroxy-8-(substituted amino)anthraquinones 6a,b. Structures of these products were established by spectroscopic and elemental analyses and confirmed by unequivocal syntheses from the tosyl intermediates. Aromatic amines were reported to replace both chloro groups of the dichlorodihydroxyanthraquinone to form 1,4-dihydroxy-5,8-bis(arylamino)anthraquinones.^{10,11}

The dichlorobis(substituted amino)anthraquinone 7 was prepared as follows: The aforementioned dichlorodihydroxyanthraquinone was reduced with Sn and HCl. The resulting leuco derivative was reacted with excess N,Ndimethylethylenediamine, followed by oxidizing of the condensed product with O2. The method is analogous to that for the preparation of DHAQ.¹

Biological Activity and Discussion

Available test results are provided in Table I. In general, there is a good correlation between dose potency in in vivo and in vitro activity. Compound 6b possesses the highest inhibitory activity against P388 leukemia among compounds in this series. Its inhibitory action against B16 melanoma and in the in vitro L1210 screen are likewise outstanding. Other compounds, including 6a, 5a, and 5b, also showed noticeable activity against P388 in vivo and L1210 in vitro. Compounds containing the [2-[(2hydroxyethyl)amino]ethyl]amino side chain seem to have a slight edge over those containing the [2-(dimethylamino)ethyl]amino side chain. The optimum number of carbon atoms between the two amino nitrogen atoms is two, which is analgous to the structural requirements in the DHAQ series.

Although all the aforementioned four compounds contain a hydroxyl group at the "opposite side" of the anthraquinone ring with regard to the position of the [(substituted amino)alkyl]amino side chain (as is the case of DHAQ and analogous compounds), the presence of the hydroxyl group may be a necessary, but not a sufficient,

Journal of Medicinal Chemistry, 1987, Vol. 30, No. 9 1683

Table I. Antineoplastic and Cytotoxic Activities of Substituted [(Aminoalky])aminolanthraquinones

	P388 in vivo testsª			in vitro tests ^b	
				- <u> </u>	human colon
	treat.		dose/inj,		adenocarcino-
no.	sched	T/C	mg/kg	L1210	ma
1 a	$Q4D \times 2$	105	200	$1.17 \times 10^{-6} \text{ M}$	$1.40 \times 10^{-6} \text{ M}$
		100	100		
1 b	$Q1D \times 9$	120	160		
		124	80		
		116	40		
3 a	$Q4D \times 2$	117	80	1.13 × 10 ⁻⁶ M	
		103	40		
3b	$Q4D \times 2$	111	400		
		96	200		
3c	$Q4D \times 2$	123	400	$3.85 \times 10^{-7} \text{ M}$	$2.29 \times 10^{-7} \text{ M}$
		128	200		
		115	100		
4a	$Q4D \times 2$	125	400	$1.76 \times 10^{-7} M$	
		113	200		
4b	$Q1D \times 5$	119	200	$1.67 \times 10^{-6} \text{ M}$	
		113	100		
5a	$Q1D \times 5$	169	120	$3.62 \times 10^{-8} \text{ M}$	
		137	60		
		121	30		
5b	$Q4D \times 2$	184	160	$3.98 \times 10^{-7} \text{ M}$	
		154	80		
		130	40		
		125	20		
		113	10		
5c	$Q1D \times 5$	129	120	$2.65 \times 10^{-7} \text{ M}$	
		123	60		
		109	30		
6a	$Q1D \times 5$	176	120	$8.69 \times 10^{-8} \text{ M}$	$5.22 \times 10^{-7} \text{ M}$
		150	60		
		136	30		
6b	$Q1D \times 5$	219	100°	$8.66 \times 10^{-8} \text{ M}$	
		180	50		
		203	25		
		146	12.5		
		154	6.25		
7b	$Q4D \times 2$	117	200^{d}	$1.17 \times 10^{-7} \text{ M}$	$1.30 \times 10^{-7} \text{ M}$
		120	100		
		110	50		

^a Ascites fluid implanted in BDF₁ mice. Route of drug administration and site of tumor inoculation: ip. For the general screening procedure and data interpretation, cf.: Geran, R. I.; Greenberg, N. H.; MacDonald, M. M.; Schumacher, A. M.; Abbott, B. J. Cancer Chemother. Rep., Part 3 1972, 3, 1. See also: Screening Data Summary Interpretation and Outline of Current Screen, Instruction Booklet 14; Drug Evaluation Branch, Division of Cancer Treatment, National Cancer Institute: Bethesda, MD, 1986. ${}^{b}\operatorname{Criterion}$ for significant cytotoxic activity is 50% inhibition at a concentration of less than 10⁻⁶ M; cf.: Leopold, W. R.; Shillis, J. L.; Mertus, A. E.; Nelson, J. M.; Roberts, B. J.; Jackson, R. C. Cancer Res. 1984, 44, 1928. See also: Leopold, W. R.; Nelson, J. M.; Plowman, J.; Jackson, R. C. Cancer Res. 1985, 45, 5532. ^cAgainst B16 melanoma (treatment schedule, $Q1D \times 9$): T/C 326 (160 mg/kg), 270 (100), 271 (80), 252 (50), 231 (40), 199 (25), 224 (20), 172 (12.5), and 166 (6.25). ^{*d*} Against B16 melanoma (treatment schedule, Q1D × 9): T/C 133 (50), 141 (25), 143 (12.5), and 117 (6.25).

condition for compounds in the chloro-substituted series since compounds 3a, 3b, and 4a, which also contain the hydroxyl group, are without activity in the present screen tests. Nevertheless, the contribution of a hydroxyl group present at a strategic position of a molecule to the biological activity should not be overlooked, as it has been repeatedly demonstrated by comparison of the activity of DHAQ and that of its unhydroxylated analogue.^{1,2,12-15}

⁽¹⁰⁾ Zahn, K.; Ochwat, P. Justus Liebigs Ann. Chem. 1928, 462, 90. (11) Shteinberg, Y. B.; Lobenzkaya, V. L. U.S.S.R. Patent 319584, 1971; Chem. Abstr. 1972, 76, 46005c.

⁽¹²⁾ Cheng, C. C.; Zbinden, G.; Zee-Cheng, R. K.-Y. J. Pharm. Sci. 1979, 68, 393. Cheng, C. C.; Zee-Cheng, R. K.-Y.; Narayanan, V. L.; Ing, R.

⁽¹³⁾ B.; Paull, K. D. Trends Pharmacol. Sci. 1981, 2, 1.

A comparison of the test results of compounds in this series with those of DHAQ and related compounds revealed that the aryl chloro-substituted [(aminoalkyl)-amino]anthraquinones are, in general, less potent than the corresponding aryl hydroxy-substituted compounds. For example, compound **6b** gave T/C values of 219, 180, 203, 146, and 154 at doses of 100, 50, 25, 12.5, and 6.25 mg/kg, respectively, against P388 leukemia, whereas DHAQ^{1a} and T/C values of 280, 277, 299, 280, 200, and 208 at doses of 2, 1, 0.5, 0.25, 0.12, and 0.06 mg/kg, respectively, against the same test system.

Experimental Section

Where analyses are indicated only by symbols of the elements, analytical results obtained for these elements were within $\pm 0.4\%$ of the theoretical values.

1-Chloro-5-[[2-[(2-hydroxyethyl)amino]ethyl]amino]-9,10-anthracenedione (1a). A mixture of 11.6 g (40 mmol) of 1,5-dichloroanthraquinone³ and 17.2 g (160 mmol) of 2-[(2aminoethyl)amino]ethanol in 60 mL of CH₃CON(CH₃)₂ was stirred at room temperature for 1 h. It was then heated at 100 °C for 45 min. The reaction mixture was cooled, and unreacted dichloroanthraquinone was removed by filtration. To the filtrate was added 100 mL of petroleum ether (bp 35-40 °C), and the mixture was cooled overnight. The crude product (8 g, mp 125-128 °C) was collected by filtration [most of the bis(substituted amino)anthraquinone remained in the filtrate]. It was boiled with 2-PrOH, treated with charcoal, and precipitated with petroleum ether to give 2.6 g of dark brown powder, mp 137–140 °C. This was column chromatographed over neutral Al₂O₃ and eluted successively with petroleum ether, Et₂O, and MeOH. Pure 1a was obtained as rust red powder that melted at 146-148 °C. The yield was 1.2 g (8.3 % yield): UV $\lambda_{\rm max}$ (MeOH) 205 nm (log ϵ 4.41), 248 (4.53), 320 (3.79), 505 (3.87). Anal. (C₁₈H₁₇ClN₂O₃) C, H, N.

1-Chloro-8-[[2-[(2-hydroxyethyl)amino]ethyl]amino]-9,10-anthracenedione (1b). A mixture of 4.2 g (15 mmol) of 1,8-dichloroanthraquinone,³ 7.5 g (72 mmol) of 2-[(2-aminoethyl)amino]ethanol, and 90 mL of dioxane was stirred at room temperature for 30 min and then refluxed for 2.5 h. The solvent was removed by distillation in vacuo. The residue was washed successively with 100 mL of H₂O, 10 mL of EtOH, and 100 mL of Et₂O to give, after drying under reduced pressure, 4.7 g of the crude product, mp 130–138 °C. Recrystallization from EtOH gave 3.0 g (58% yield) of 1b: mp 144–145 °C; UV λ_{max} (MeOH) 213 nm (log ϵ 4.47), 253 (4.96), 331 (3.95), 511 (3.16). Anal. (C₁₈-H₁₇ClN₂O₃) C, H, N.

1,5-Dichloro-4,8-bis(tosyloxy)-9,10-anthracenedione. To 12.4 g (40 mmol) of 1,5-dichloro-4,8-dihydroxyanthraquinone in 400 mL of CH₂Cl₂ was added 22.4 mL (160 mmol) of Et₃N followed by 19.1 g (100 mmol) of *p*-CH₃C₆H₄SO₂Cl. The reaction mixture was stirred at room temperature for 24 h. It was transferred to a separatory funnel and washed with H₂O (3 × 150 mL). The organic layer was separated and dried over anhydrous Na₂SO₄. After the solvent was removed, there was obtained 23 g of solid, mp 175–178 °C. Recrystallization from a mixture of CHCl₃ and EtOH gave 20.2 g (81.5% yield) of product: mp 185–187 °C; UV λ_{max} (MeOH) 230 nm (log ϵ 4.59), 345 (3.70). This compound was used for following reactions without further characterization.

1,5-Dichloro-4-[[2-(dimethylamino)ethyl]amino]-8-(tosyloxy)-9,10-anthracenedione. To a stirring mixture of 6.2 g (10 mmol) of the ditosylanthraquinone in 250 mL of CH₃CN was added 2.0 g (22 mol) of N,N-dimethylethylenediamine. The mixture was refluxed for 20 h and then was evaporated to dryness under reduced pressure. The residue was dissolved in 100 mL of CHCl₃ and washed with H₂O (2 × 50 mL). The CHCl₃ extract was dried (Na₂SO₄) to give, after removal of solvent, 3.2 g (61% yield) of the product, mp 180–183 °C. The product was purified by recrystallization from EtOH: mp 195–197 °C; UV λ_{max} (MeOH) 230 nm (log ϵ 4.60), 250 (4.64), 335 (3.77), 510 (3.90); NMR (CDCl₃) δ 2.3 (s, 6 H, CH₃), 2.4 (s, 3 H, CH₃), 2.6 (t, 2 H, CH₂), 3.4 (q, 2 H, CH₂), 6.8-8.0 (m, 8 H, Ar H), 9.2 (br s, 1 H, NH).

1,5-Dichloro-4-[[2-(dimethylamino)ethyl]amino]-8hydroxy-9,10-anthracenedione (3a). To a solution of 4.5 g (8 mmol) of the preceding tosyl intermediate in 150 mL of EtOH was added 150 mL of 5% NaOH. The mixture was heated at 75-80 °C for 2.5 h and filtered while hot. The filtrate was acidified with 5 N HCl to pH 1 and then made basic with NH₄OH. The solid thus formed was collected by filtration, washed with H₂O, and dried in vacuo to yield 3.7 g of crude **3a**, mp 126-128 °C. It was recrystallized from EtOH to give 2.7 g (85% yield) of pure **3a**: mp 129-131 °C dec; UV λ_{max} (MeOH) 233 nm (log ϵ 4.62), 325 (370), 410 (3.58), 525 (3.92); NMR (CDCl₃) δ 2.4 (s, 6 H, CH₃) 2.7 (t, 2 H, CH₂), 3.4 (q, 2 H, CH₂), 7.0-7.8 (m, 4 H, Ar H), 10.1 (br s, 1 H, NH); mass spectrum 379 (M⁺), 380 (M⁺ + 1). Anal. (C₁₈H₁₆Cl₂N₂O₈) C, H, N.

1,5-Dichloro-4-[[2-[(2-hydroxyethyl)amino]ethyl]amino]-8-(tosyloxy)-9,10-anthracenedione. A mixture of 3.08 g (5 mmol) of the aforementioned ditosylanthraquinone, 100 mL of CH₃CN, and 1.04 g (10 mmol) of 2-[(2-aminoethyl)amino]ethanol was refluxed for 5 h and evaporated to dryness. The residue was purified by chromatography through a SiO₂ column to give 1.96 g (71% yield) of the product, mp 102–105 °C. This intermediate was used for the preparation of **3b** without further purification.

1,5-Dichloro-4-[[2-[(2-hydroxyethyl)amino]ethyl]amino]-8-hydroxy-9,10-anthracenedione (3b). To a solution of 0.9 g (1.6 mmol) of the preceding tosyl compound in 25 mL of EtOH was added 25 mL of 7% NaOH. The mixture was refluxed for 4 h and filtered while hot. The filtrate was acidified to pH 1 with 2 N HCl and then made basic with NH₄OH. The solid thus formed was collected by filtration, washed with H₂O, and dried in vacuo to give 0.48 g of crude **3b**. It was purified by chromatography over SiO₂ to give 0.32 g (49% yield) of **3b**; mp 116–119 °C dec; UV λ_{max} (MeOH) 235 nm (log ϵ 4.58), 330 (3.60), 415 (3.51), 525 (3.85); mass spectrum 395 (M⁺), 397 (M⁺ + 2). Anal. (C₁₈H₁₆Cl₂N₂O₄) C, H, N.

1,5-Bis[[2-(dimethylamino)ethyl]amino]-4,8-dichloro-9,10-anthracenedione (3c). A mixture of 5.4 g (14.7 mmol) of 1,5-dichloro-4,8-dinitroanthraquinone⁷⁻⁹ in 30 mL of dioxane was heated to 50 °C with stirring. To the resulting solution was added dropwise (20 min) 8 g (90 mmol) of N,N-dimethylethylenediamine in 20 mL of dioxane. The resulting mixture was heated at 50-60 °C with sitrring for 2 h. Solvent was removed under reduced pressure. To the residue was added 100 mL of H_2O . After the mixture was stirred for 30 min at room temperature, the solid was collected by filtration and washed well with H_2O and then with Et₂O. The solid product was recrystallized from a small amount of MeOH to yield a crude product, mp 186-188 °C. It was further purified by column chromatography over SiO₂ and eluted seccessively with benzene and 5:1 benzene-acetone to give 2.4 g (36% yield) of 3c: mp 189–191 °C; UV λ_{max} (MeOH) 206 nm (log ϵ 4.39), 237 (4.48), 318 (3.72), 524 (3.95); mass spectrum 450 (M⁺). Anal. ($C_{22}H_{26}Cl_2N_4O_2 \cdot 0.25H_2O$) C, H, N.

1,8-Dichloro-4,5-bis(tosyloxy)-9,10-anthracenedione. To a solution of 12.4 g (40 mmol) of 1,8-dichloro-4,5-dihydroxyanthraquinone⁵ in 400 mL of CH₂Cl₂ was added 22.4 mL of Et₃N followed by 19.1 g (100 mmol) of *p*-CH₃C₆H₄SO₂Cl. The mixture was refluxed for 12 h and filtered. The filtrate was washed with H₂O (3 × 5 mL) in a separatory funnel and dried (Na₂SO₄). The solvent was removed under reduced pressure, and the residue was triturated with a small amount of Et₂O. The resulting solid was collected by filtration, washed with a small amount of CH₂Cl₂, and dried to yield 18.5 g of a crude product, mp 198-201 °C. It was recrystallized from CHCl₃ to give 16.1 g (65% yield) of the ditosyl compound: mp 207-209 °C; UV λ_{max} (MeOH) 220 nm (log ϵ 4.57), 250 (4.44), 350 (3.50). This compound was used for the preparation of 4a without further characterization.

1,8-Dichloro-4-[[2-(dimethylamino)ethyl]amino]-5hydroxy-9,10-anthracenedione (4a). A mixture of 10.8 g (17.5 mmol) of the preceding ditosylanthraquinone, 3.0 g (35 mmol) of N,N-dimethylethylenediamine, and 250 mL of CH₃CN was refluxed for 7 h. After removal of the solvent, the residue was dissolved in 150 mL of EtOH. To the solution was added 150 mL of 7% NaOH. The mixture was refluxed for 4.5 h and filtered while hot. The filtrate was acidified with 5 N HCl and then made basic with NH₄OH. The solid thus formed was collected by

⁽¹⁴⁾ Uyeki, E. M., Nishio, A.; Wittek, P. J.; Cheng, C. C. J. Pharm. Sci. 1981, 70, 1011.

⁽¹⁵⁾ Kimler, B. F.; Cheng, C. C.; Barnes, R. E.; Barnes, M. L. Invest. New Drugs 1983, 1, 213.

filtration, washed with H₂O, and dried. Purification through column chromatography over SiO₂ with CHCl₃–EtOH (95:5) as eluent followed by recrystallization from EtOH gave 3.2 g (39.4% yield) of 4a: mp 151–153 °C; UV λ_{max} (MeOH) 207 nm (log ϵ 4.39), 235 (5.63), 326 (3.58), 525 (4.06). Anal. (C₁₈H₁₆Cl₂N₂O₃·0.25H₂O) C, H, N.

1,8-Bis[[2-(dimethylamino)ethyl]amino]-4,5-dichloro-9,10-anthracenedione (4b). To a stirred solution of 2.6 g (7.1 mmol) of 1,8-dichloro-4,5-dinitroanthraquinone in 20 mL of dioxane at 100 °C was added dropwise 6.2 g (270 mmol) of N,Ndimethylethylenediamine in 8 mL of dioxane. The mixture was refluxed for 2 h (TLC showed the absence of starting material). Excess solvent as removed under reduced pressure. To the residue was added 50 mL of H₂O. After the mixture was stirred for 30 min at room temperature, the solid was collected by filtration and washed with H₂O, cold EtOH, and then Et₂O. It was recrystallized initially from MeOH and then from 2-PrOH, to give 0.7 g (21% yield) of 4b: mp 185-187 °C; UV λ_{max} (MeOH) 204 nm (log ϵ 4.37), 236 (4.50), 318 (3.92), 544 (4.04); mass spectrum 450 (M⁺). Anal. (C₂₂H₂₈Cl₂N₄O₂·H₂O) C, H, N.

1-Chloro-5,8-dihydroxy-4-[[2-(dimethylamino)ethyl]amino]-9,10-anthracenedione (5a). To a stirred solution of 12.4 g (40 mmol) of 1,4-dichloro-5,8-dihydroxyanthraquinone⁷ in 150 mL of pyridine was added 8.8 g (100 mmol) of N,N-dimethylethylenediamine. The mixture was refluxed with continuous stirring for 90 min. Excess solvent was removed by evaporation under reduced pressure. The residue was triturated with petroleum ether to yield 15 g of a crude product. It was chromatographed over a SiO₂ column and eluted successively with CHCl₃, 95:5 CHCl₃-EtOH, and 9:1 CHCl₃-EtOH to give, after recrystallization from EtOH, 8.2 g (57% yield) of 5a as a purple solid: mp 168-170 °C; UV λ_{max} (MeOH) 240 nm (log ϵ 4.65), 290 (4.00), 550 (4.13), 572 (4.12); NMR (CDCl₃) δ 2.3 (s, 6 H, NCH₃), 2.7 (t, 2 H, CH₂), 3.3 (t, 2 H, CH₂), 6.8-7.5 (m, 4 H, Ar H), 10.0 (br s, 1 H, NH), 12.9 (br s, 2 H, OH). Anal. (Cl₁₈H₁₇ClN₂O₄) C, H, N.

1-Chloro-5,8-dihydroxy-4-[[2-[(2-hydroxyethyl)amino]ethyl]amino]-9,10-anthracenedione (5b). This compound was prepared in a manner similar to that for 5a from 9.3 g (30 mmol) of 1,4-dichloro-5,8-dihydroxyanthraquinone,⁷ 6.3 g (60 mmol) of 2-[(aminoethyl)amino]ethanol, and 150 mL of pyridine. After column chromatography (CHCl₃, 95:5 CHCl₃-EtOH, 8:2 CHCl₃-EtOH, and 7:3 CHCl₃-EtOH successively) and crystallization from EtOH, 3.1 g (28% yield) of 5b was obtained as purple crystals: (softened at 185 °C) 204-206 °C dec; UV λ_{max} (MeOH) 235 nm (log ϵ 4.52), 285 (3.89), 545 (3.96), 565 (3.95); mass spectrum 376 (M⁺), 377 (M⁺ + 1). Anal. (C₁₈H₁₇ClN₂O₅·1.25H₂O) C, H, N.

1-Chloro-5,8-dihydroxy-4-[[3-(dimethylamino)propyl]amino]-9,10-anthracenedione (5c). This compound was prepared in a manner similar to those for 5a and 5b from 4.5 g (14.5 mmol) of 1,4-dichloro-5,8-dihydroxyanthraquinone,⁷ 3.4 g (33 mmol) of N,N-dimethylpropylenediamine, and 100 mL of pyridine to give, after column chromatography and recrystallization from a mixture of CHCl₃ and petroleum ether, 3.3 g (60% yield) of a purple solid: mp 134-136 °C dec; UV λ_{max} (MeOH) 240 nm (log ϵ 4.70), 290 (4.04), 550 (4.16), 575 (4.14); NMR (CDCl₃) δ 1.9 (q, 2 H, CH₂), 2.3 (s, 6 H, NCH₃), 2.4 (q, 2 H, CH₂), 3.3 (q, 2 H, CH₂), 6.7-7.4 (m, 4 H, Ar H), 9.8 (br s, 1 H, NH), 12.8 (br s, 2 H, OH); mass spectrum 374 (M⁺). Anal. (C₁₉H₁₉ClN₂O₄) C, H, N.

The hydrochloride salt of 5c was also prepared: mp 266-268 °C; UV λ_{max} (MeOH) 204 nm (log ϵ 4.27), 234 (4.63), 285 (3.99), 540 (4.07), 570 (4.20); mass spectrum 374 (M⁺). Anal. (C₁₉H₁₉-ClN₂O₄·HCl·0.5H₂O) C, H, N.

1,4-Dichloro-5-[[2-(dimethylamio)ethyl]amino]-8hydroxy-9,10-anthracenedione (6a). To a stirred mixture of 9.3 g (30 mmol) of 1,4-dichloro-5,8-dihydroxyanthraquinone⁷ in 160 mL of BuOH was added a solution of 5.5 g (40 mmol) of N,N-dimethylethylenediamine in 40 mL of BuOH. The mixture was heated at 135 °C for 5 h and then cooled. The resulting dark purple solid was collected by filtration, washed with petroleum ether (3 × 20 mL), and dried to give 6 g (51% yield) of crude 6a, mp 125-130 °C. It was purified through a SiO₂ column with CHCl₃ as the eluting solvent. The resulting evaporated solid was recrystallized from a small amount of EtOH to give 0.9 g (8% yield) of pure 6a: mp 146-148 °C; UV λ_{max} (MeOH) 215 nm (log ϵ 4.31), 238 (4.33), 290 (4.13), 345 (3.65), 540 (3.91), 570 (3.85). Anal. C₁₈H₁₆Cl₂N₂O₃·0.5H₂O) C, H, N.

1,4-Dichloro-5-hydroxy-8-[[2-[(2-hydroxyethyl)amino]ethyl]amino]-9,10-anthracenedione (6b). To a mixture of 3.1 g (10 mmol) of 1,4-dichloro-5,8-dihydroxyanthraquinone⁷ in 60 mL of BuOH was added, with stirring, a solution of 1.5 g (15 mmol) of 2-[(aminoethyl)amino]ethanol in 20 mL of BuOH. The mixture was refluxed for 5 h with continuous stirring. It was cooled, and the resulting dark purple crystals were collected by filtration. The solid was washed with petroleum ether (3 × 20 mL) and dried to give 4.0 g (76% yield) of crude product, mp 85–100 °C. Recrystallization from a mixture of 500 mL of EtOH and 500 mL of petroleum ether (bp 60–68 °C) gave 750 mg (18.5% yield) of purified 6b: mp 178–180 °C; UV λ_{max} (MeOH) 206 nm (log ϵ 4.27), 239 (4.42), 258 (4.31), 540 (3.91), 570 (3.97); mass spectrum 395 (M⁺), 397 (isotope Cl). Anal. (C₁₈H₁₆Cl₂N₂O_{4*}0.5H₂O) C, H, N.

The structures of compounds 6a and 6b were confirmed by unequivocal syntheses from the tosyl intermediates. Following is a description of the synthesis of 6b via the ditosyl intermediate.

To a mixture of 12.4 g (40 mmol) of 1,4-dichloro-5,8-dihydroxyanthraquinone⁷ and 19.1 g (100 mmol) of p-CH₃C₆H₄SO₂Cl in 400 mL of CH₂Cl₂ was added dropwise, in 15 min, 29 mL (200 mL) of Et₃N. The mixture was stirred at room temperature for 20 h and then decomposed with 400 mL of H₂O. The organic layer was separated, washed with H₂O (2 × 400 mL), and dried (Na₂SO₄). The solvent was removed by evaporation under reduced pressure to give 24 g of 1,4-dichloro-5,8-ditosyl-9,10-anthracenedione, mp 178–180 °C. Recrystallization from a mixture of CHCl₃ and petroleum ether gave the ditosyl compound as white crystals: mp 181–183 °C; UV λ_{max} (MeOH), 204 nm (log ϵ 4.49), 220 (4.61), 345 (3.62).

To a solution of 6.2 g (10 mmol) of the ditosyl compound in 130 mL of CH_2Cl_2 was added dropwise, with stirring, 2.6 g (25 mmol) of 2-[(2-aminoethyl)amino]ethanol. The mixture was stirred at room temperature for 30 min and then heated under reflux for 10 h. The reaction mixture was cooled and the organic layer separated, dried (Na₂SO₄), and evaporated under reduced pressure. The residual solid was added to a solution of 10.8 g of KOH in 150 mL of EtOH and 30 mL of H₂O and heated at 80 °C for 2 h. The resulting mixture was acidified with 10% HCl and then neutralized with NH₄OH to give, after cooling, 8.8 g of solid. Column chromatography of this material over SiO₂ with CHCl₃-MeOH (9:1) as eluent gave a product, mp 178-180 °C (mixed mp 178-180 °C). Its IR, UV absorption, and TLC characteristics are identical with those of the product obtained by the aforementioned BuOH method.

1,4-Bis[[2-(dimethylamino)ethyl]amino]-5,8-dichloro-9,10-anthracenedione (7). A mixture of 8 g (25 mmol) of 1,4dichloroleucoquinizarin (prepared by heating 12.4 g of 1,4-dichloro-5,8-dihydroxyanthraquinone in 23.5 g of Sn, 70 mL of HCl, and 400 mL of AcOH at 90–95 °C for 22 h, collecting the insoluble solid, washing it with H₂O, and drying it in vacuo, λ_{max} (MeOH) 430 and 448 nm) and 18 g (200 mmol) of N,N-dimethylethylenediamine was heated with stirring at 55 °C for 2 h. The reaction was cooled, and to it was added 20 mL of 2-PrOH. It was stirred overnight under O_2 . To the resulting mixture was added 100 mL of petroleum ether. After the mixture was stirred for 1 h, the solid was collected by filtration, washed with petroleum ether (3 \times 30 mL), and dried in vacuo to give 10.3 g of the crude product. This was dissolved in 200 mL of hot MeOH saturated with HCl and 200 mL of Et_2O . The mixture was stirred for 10 min. The solid was collected by filtration, washed with Et₂O, and dried to give 12 g of the HCl salt of the crude product, mp 249-251 °C. Recrystallization from BuOH gave 4.5 g (33.5% yield) of 7: mp 260–262 °C; UV λ_{max} (MeOH) 218 nm (log ϵ 4.46), 242 (4.50), 328 (3.67), 610 (4.04), 649 (3.99). Anal. ($C_{22}H_{26}Cl_2N_4O_2\cdot 2HCl\cdot$ 0.25H₂O) C, H, N.

Acknowledgment. We thank the American Cancer Society (Grant No. BC-446) for the financial support. We also thank the Bayer AG, Federal Republic of Germany, for the generous present of 1,4-dichloro-5,8-dihydroxyanthraquinone. The in vivo antineoplastic data are the results of screening performed under the auspices of the Developmental Therapeutics Program, Division of Cancer Treatment, National Cancer Institute, Bethesda, MD. The in vitro cytotoxic data are the results of testing performed at Warner-Lambert/Parke-Davis Co.,, Ann Arbor, MI. We thank Drs. Ven L. Narayanan, Kenneth D. Paull, John F. Waters, and Betty J. Abbott of the National Cancer Institute and Drs. Edward F. Elslager, Leslie M. Werbel, Robert C. Jackson, Roger Westland, Martin L. Black, and Katherine Woo of the Warner-Lambert Co. Pharmaceutical Research Division for providing the in vivo and in vitro tests. We also thank Katherine Cheng of our laboratory for her valuable instrumentation analyses.

Registry No. 1a, 109217-80-3; 1b, 109217-81-4; 3a, 109217-82-5; 3b, 109217-83-6; 3c, 109217-84-7; 4a, 109217-85-8; 4b, 109217-86-9; 5a, 109217-87-0; 5b, 109217-88-1; 5c, 109217-89-2; 5c·HCl, 109217-90-5; 6a, 109217-91-6; 6b, 109217-92-7; 7·2HCl, 109217-93-8;

mitoxantrone, 65271-80-9; 1,5-dichloroanthraquinone, 82-46-2; 2-[(2-aminoethyl)amino]ethanol, 111-41-1; 1,8-dichloroanthraquinone, 82-43-9; 1,5-dichloro-4,8-dihydroxyanthraquinone, 6837-97-4; 1,5-dichloro-4,8-bis(tosyloxy)-9,10-anthracenedione, 109217-79-0; N,N-dimethylethylenediamine, 108-00-9; 1,5-dichloro-4-[[2-(dimethylamino)ethyl]amino]-8-(tosyloxy)-9,10anthracenedione, 109241-78-3; 1,5-dichloro-4-[[2-[(2-hydroxyethyl)amino]ethyl]amino]-8-(tosyloxy)-9,10-anthracenedione, 109241-79-4; 1,5-dichloro-4,8-dinitroanthraquinone, 6305-89-1; 1,8-dichloro-4,5-dihydroxyanthraquinone, 66227-51-8; 1,8-dichloro-4,5-bis(tosyloxy)-9,10-anthracenedione, 109241-80-7; 1,8dichloro-4,5-dinitroanthraquinone, 6305-90-4; 1,4-dichloro-5,8dihydroxyanthraquinone, 2832-30-6; N,N-dimethylpropylenediamine, 109-55-7; 1,4-dichloro-5,8-bis(tosyloxy)-9,10anthracenedione, 91441-77-9; 1,4-dichloroleucoquinizarin, 98809-43-9.

Improved Synthesis and Antitumor Activity of 1-Deazaadenosine

Gloria Cristalli, Palmarisa Franchetti, Mario Grifantini,* Sauro Vittori, Teresa Bordoni,[†] and Cristina Geroni[†]

Dipartimento di Scienze Chimiche, Università di Camerino, 62032 Camerino, Italy, and Farmitalia, Carlo Erba S.p.A., Milano, Italy. Received January 5, 1987

A more convenient synthetic route to 1-deazaadenosine (1) by reduction of the new nucleoside 7-nitro-3- β -D-ribofuranosyl-3*H*-imidazo[4,5-*b*]pyridine (6) is reported. Compound 6 was obtained by reaction of 7-nitroimidazo-[4,5-*b*]pyridine with 1,2,3,5-tetra-*O*-acetyl- β -D-ribofuranose in the presence of stannic chloride followed by treatment with methanolic ammonia. 1-Deazaadenosine (1) showed good activity in vitro as inhibitor of HeLa, KB, P388, and L1210 leukemia cell line growth, with ID₅₀ values ranging from 0.34 μ M (KB) to 1.8 μ M (P388). The nitro derivative 6 demonstrated moderate activity against the same cell lines.

The adenosine analogue 1-deazaadenosine (1) was found to have a wide spectrum of biological properties. Recently our studies stressed its activity as an inhibitor of blood platelet aggregation¹ and of adenosine deaminase² and as an agonist of the adenosine receptors.³ Furthermore, Japanese authors have reported, without providing experimental data, that 1 shows potent antileukemic activity.⁴ Several syntheses of 1 have been reported⁵ and the most convenient one appears to be that described by Itoh and co-workers, who have obtained in six steps the title compound in 25% overall yield, starting from imidazo-[4,5-b]pyridine 4-oxide (2).^{5d} Recently we reported an improved synthesis of 7-nitroimidazo[4,5-b]pyridine 4oxide (3) accomplished by nitration of 2 with a nitric acid-trifluoroacetic acid mixture.¹ The possibility that such a compound might be an useful intermediate in the synthesis of 1-deazaadenosine prompted us to design a new synthetic route to 1.

Chemistry

The synthesis of 1-deazaadenosine (1) was carried out according to Scheme I. Reaction of compound 3 with phosphorus trichloride in acetonitrile gave the deoxygenated derivative 4, which was condensed with an equimolar

- (3) Cristalli, G.; Grifantini, M.; Vittori, S.; Balduini, W.; Cattabeni, F. Nucleosides Nucleotides 1985, 4, 625.
- (4) Itoh, I.; Inaba, J.; Mizuno, Y. Heterocycles 1977, 8, 433.
- (5) (a) Jain, P. C.; Chatterjee, S. K.; Anand, N. Indian J. Chem. 1966, 4, 403. (b) De Ross, K. B.; Salemink, C. A. Recl. Trav. Chim. Pays-Bas 1971, 9, 654. (c) Itoh, T.; Kitano, S.; Mizuno, Y. J. Heterocycl. Chem. 1972, 9, 465. (d) Itoh, T.; Sugawara, T.; Mizuno, Y. Nucleosides Nucleotides 1982, 1, 179.

Scheme I NO2 PCI3 CF3COOH. HNO: ò н з 2 NO₂ NO₂ TAR SnCl4 NH3 AcOCH2 0 4 AcÓ ÓAc 5 NO2 NH₂ H₂, Pd/C HOCH2 HOCH2 C C НÒ ÔН HO OF

amount of 1,2,3,5-tetra-O-acetyl- β -D-ribofuranose (TAR) in acetonitrile in the presence of a catalytic amount of stannic chloride to provide 7-nitro-3-(2,3,5-tri-O-acetyl- β -D-ribofuranosyl)-3H-imidazo[4,5-b]pyridine (5) in 82% yield. The 7-amino-3- β -D-ribofuranosyl-3H-imidazo[4,5b]pyridine (1-deazaadenosine, 1) was easily obtained from the deblocked nucleoside 6 in 93% yield by hydrogenation

6

Antonini, I.; Cristalli, G.; Franchetti, P.; Grifantini, M.; Martelli, S.; Petrelli, F. J. Pharm. Sci. 1984, 73, 366.

⁽²⁾ Lupidi, G.; Riva, F.; Cristalli, G.; Grifantini, M. Ital. J. Biochem. 1982, 31, 396.